注册 登录  
 加关注
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

潍水河畔好读书

苟日新 日日新 又日新

 
 
 

日志

 
 

【转载】大师笔下的大师:柯尔莫哥洛夫的数学观与数学教育思想  

2016-12-01 09:08:57|  分类: 审辩思维 |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |

581期:大师笔下的大师:柯尔莫哥洛夫的数学观与数学教育思想

 

伊藤清

 

谢小庆按:柯尔莫哥洛夫(Kolmogorov,1903-1987,俄国)是20世纪最伟大的数学家之一,获得1980年沃尔夫奖。他在测度论基础上重建了概率论,完成了古典概率论的公理化过程,成为现代概率论的奠基人。伊藤清(1915-2008,日本)是1987年沃尔夫数学奖得主。他在概率论方面的研究成果在金融领域得到广泛应用,被称为“华尔街最著名的日本人”。

本文节选自伊藤清追忆柯尔莫哥洛夫的文章。柯尔莫哥洛夫的数学观有助于我们理解审辩式思维(critical thinking),他的数学教育思想可以给我们的数学教学改革带来重要启发。

读伊藤清先生的文章,心中有一种莫名的感动。柯尔莫哥洛夫是一个活得非常纯粹的人,他的一生是让人羡慕的一生,不是羡慕他的成就,而是羡慕他的纯粹。他一生都活在数学的王国中,享受数学,享受发现,享受创造。这真是一种值得向往的人生。

本文摘编于《赛先生》微信公众号。

 

当我得知苏联伟大的数学家,84岁的柯尔莫哥洛夫教授于1987年10月20日离开人世时,我感到像是失去了支柱那样悲哀与孤寂。在我还是学生时(1937年)读了他的名著《概率论的基本概念》之后,便立志钻研概率论,并持续了50年之久。对于我来说,柯尔莫哥洛夫就是我的数学基础。

柯尔莫哥洛夫在数学的几乎所有领域中都提出了独创的思想,导入了崭新的方法,他的业绩是非常辉煌的。然而,我见到他时给我留下的印象却是不修边幅的温厚的君子形象,这也许正是伟大数学家的形象吧。

柯尔莫哥洛夫的论文我自认为基本上都好好地读过了,在撰写本稿时,我又对他整个的研究成果做了一个直接或间接的调查。对其研究的广度和深度不得不叹服。

 

柯尔莫哥洛夫的数学观

 

了解柯尔莫哥洛夫的数学观的最好的资料,大概要属苏联大百科辞典中他所执笔的“数学”部分吧。已经出了英文版,我读了英文版,与原文(俄语)比较,英文版稍微缩略了一些,在这篇文章中,他先阐述了其数学观,然后通述了自古至今的数学史,并且从他的数学观出发,详细描述了这个历史的各个阶段,它可以说是为数学家、科学家们所写的数学史。我饶有兴趣地一口气读完了全篇。要说明柯尔莫哥洛夫的数学观,不仅应当看这篇文章的开始部分,也应当参照占该文大部分的数学史,但由于篇幅及时问的限制,我仅将文章的开始部分简要介绍如下。

根据柯尔莫哥洛夫的观点,数学是现实世界中的数量关系与空间形式的科学。

(1)因此数学的研究对像是产生于现实中的。然而作为数学加以研究时,必须离开现实的素材(数学的抽象性)。

(2)但是,数学的抽象性并不意味着完全脱离于现实素材。需要用数学加以研究的数量关系与空间形式的种类,应科学技术的要求,是不断增加着的。因此上面定义的数学内容在不断地得到丰富。

数学与诸科学:数学的应用是多种多样的,从原理上讲,数学方法的应用范围是无边际的,即物质的所有类型的运动都可以用数学加以研究。但是数学方法的作用与意义在不同情况下是不同的。用单一的模式来包罗现象的所有侧面是不可能的。认识具体的东西(现象)的过程中总是具有下面两个互相缠绕的倾向。

(1)仅将研究对象(现象)的形式分离出来,对这个形式作逻辑上的解析。

(2)弄清与已经确立的形式所不相符的“现象的方面”,向具有更多的可塑性,更能完整地包含“现象”的新的形式转化。

如果在研究的过程中必须时刻考察现象的本质上新的侧面,因而研究中的困难主要体现在上面的(2)的部分。这样的现象的研究(如生物学、经济学、人文科学等)中,数学方法就不是主要的。在这种时候,对现象的所有方面的辨证分析会由于数学形式反而变得含糊。

与此相反,如果用比较简单的、稳定的某种形式便可以把握研究对象(现象),并且在这个形式的范围内产生了在数学上需要加以特殊研究(特别是需要创造新的记号和计算法)的困难而复杂的问题时,这种现象的研究(如物理学)则在数学方法的支配圈内。

做了这些一般性的论述后,首先详细说明了行星运动完全是在数学方法的支配圈内,在这里数学形式是对于有限质点系的牛顿的常微分方程。

从力学转向物理学,数学方法的作用几乎不减,但应用中的困难明显增加。在物理学中,几乎没有不必使用高级数学技术(如偏微分方程理论、泛函分析)的领域。但是研究中出现的困难往往不在于数学理论的推导过程中,而在于“为运用数学所作的假设的选择”和“由数学手段所得结果的解释”中。

数学方法具有包含从考察的某个水平开始,向更高的、本质上新的水平转移这样一个过程的能力。这种例子在物理理论中是可以见到许多的:扩散现象便是一个古典的好例子。从扩散的宏观理论(拋物型偏微分方程)向更高的微观水平的理论(用独立的随机过程来描述溶液中粒子随机运动的统计力学)转移,从后者出发运用大数定律,可导出把握前者的微分方程,柯尔莫哥洛夫对此种情形作了更加详细具体的说明。

同物理学相比,在生物学中数学更处于从属地位。在经济学和人文科学中的,这种情况就更加突出了,在生物学和杜会科学中数学方法的应用主要是以控制论的形式进行的。在这些学科中,数学的重要性以辅助科学──数理统计学的形式保留几分,但在社会现象的精确分析中,各个历史阶段中的本质性差异的侧面是占主导地位的,因而数学方法常常要靠边站。

数学与技术、算术、初等几何的原理,正像古代数学史所表明的那样,是从日常生活的需要中产生的。其后的新的数学方法或思想也是受到天文学、力学、物理学等满足实际需要的学科的影响而产生的,但是数学与技术(工程学)的直接联系至今常常是通过已有的数学理论在技术中的应用这样一个形式来实现的。当然还须指出,根据技术上的要求而直接产生新数学的一般理论这种例子也是有的〔例如,最小二乘法(测地),操作数法(电气工程)。作为概率论的新分支的信息论(通信工程),数理逻辑学的新分支,微分方程的近似解法,数值解法等〕。

高度的数学理论使得计算机科学的方法急速地发展起来。而计算机科学在解决原子能利用、宇宙开发中的问题等大量的实际问题时扮演了主要的角色。

柯尔莫哥洛夫在后面的数学史的叙述中也总是注重数学与其它诸学科的关联,同时也高度评价了由于数学内部的要求而推动的纯数学的发展。例如,在实际问题的应用这方面,古代希腊要落后于巴比伦,然而在数学的理论方面,希腊远远领先于巴比伦。他尤其赞颂了“存在无限多个素数”、“等腰直角三角形的斜边与另一边之间不存在公约数”等伟大发现。接着他详细说明了实际主义的巴比伦数学与理想主义的希腊数学是如何经过中世纪的阿拉伯数学,发展至欧洲的近代数学的过程,非常有趣。我从这个历史中学到了许多史实。例如,我以前知道变换群这个概念是在18世纪后半叶至19世纪初,由Lagrange(分析)、Galois(方程式论)等有效地使用了的。但我还想知道现在大学里讲授的(抽象)群的定义到底是由谁给出的。根据柯尔莫哥洛夫的数学史,这个定义是由A.Cayley在19世纪中叶所给出的。

总之,柯尔莫哥洛夫的数学观是由他的数学上的独创性,对于数学应用所抱有的激情及对于数学发展的历史所具有的洞察。这几个方面所组成的,难以用一言来概之。如果一定要用一句话来总结,也许可以这样说:柯尔莫哥洛夫把数学看成为可以无限制地成长的“生物体”。

 

柯尔莫哥洛夫的数学教育观

 

柯尔莫哥洛夫在莫斯科大学培养了许多数学家,其中不少人已成为国际上的著名学者,这一点广为人知。他还热心于高中的数学教育,自己亲自写讲义,对数学教育所应有的姿态作了深刻的思考。柯尔莫哥洛夫60岁寿辰时(1963),P.S.Alexandrov和B.V.Gnedenko作了题为《教育家柯尔莫哥洛夫》的讲演。下面参考此文讲述一下柯尔莫哥洛夫的数学教育论。

柯尔莫哥洛夫认为,有些家长和教师企图从10岁~12岁左右的学生中挖掘有数学才能的孩子,这样做会害了孩子,但是孩子到了14~16岁时,情况就不一样了。他们对数学物理的兴趣已很清楚地表现了出来,根据柯尔莫哥洛夫在高中教授数学物理的经验,大约有一半的学生认为数学物理对自己仅有很小的作用。对于这些学生应该安排简单内容的课程。这样,另一半的学生(并不一定他们都要搞数学物理专业)的数学教育就可以更有效地进行。

高中时将数学物理系、工程系、生物农医系、杜会经济系等各专业分开为好。各系的主要学科的教授时间可稍稍增加一点(如数学1小时、物理1小时等),即使这样效果也是非常显著的。各专业系的教育可以使学生增强目的意识,而不至于影响有宽度的一般教育。革命初期提出的“统一劳动学校”的口号,并不否定个人能力的开发与特殊训练,而只是意味着废除阶级意识的学校,消除贫苦人面前的障碍。

数学需要特别的才能这一说法在很多情况下是过于夸张了。数学是特别难的科目这一印象可能是产生于笨拙的、极其教条的教学方法。如果有好的教师和好的教科书,正常的平均程度的人的能力足以消化高中数学,并进一步理解微积分的初步知识。

然而,高中生在选择数学作为上大学的专业时,自然应测验一下自己对数学的适应性。实际上,在理解(数学的)推论、解决问题、或作出新的发现上,其速度、容易程度和成功度是因人而异的。在数学专业教育中,应选择在数学领域出成就的可能性大的青年人。

什么是对于数学的适应性呢?柯尔莫哥洛夫总结为以下三点:

(1)算法能力:即对于复杂式子作高明的变形,对于用标准方法解不了的方程式作巧妙的解决的能力(仅记住许多定理、公式是不行的)。

(2)几何学直观:对于抽象的东西,能够在头脑中像画画一样描绘出来并加以思考。

(3)一步一步地作逻辑性推理的能力:例如能够正确地应用数学归纳法。

仅有这些能力,而对研究题目不抱有强烈的兴趣、不作持久不断的研究活动的话,还是起不了什么作用。

在大学的数学教育中,好的教师又是什么样的呢?

(1)讲课高明。如用其它的科学领域的例子来吸引学生。

(2)以清晰的解释和宽广的数学知识来吸引学生。

(3)善于作个别指导。清楚每个学生的能力,在其能力范围内安排学习内容,使学生增强自信心。

以上每一条都是有价值的,而理想的教师应属(3)类型的教师。

学生在开始搞研究的时候,首先必须使其树立起“自己能够搞出点名堂”的自信心。因而在布置研究课题时,不但要考虑“这样题目的重要性”,还应考虑“这个研究是否能提高学生的水平”,“是否在学生的能力范围内,而且需要作最大程度的努力才能解决的问题”。

以上就是柯尔莫哥洛夫的数学教育论的概略。柯尔莫哥洛夫不仅是伟大的数学家,也是伟大的教育家,也许说是伟大的思想家更合适。

  评论这张
 
阅读(5)| 评论(0)
推荐 转载

历史上的今天

在LOFTER的更多文章

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2017